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SUMMARY 

Effective motion planning and localization are necessary tasks for swarm robotic systems to maintain 

a desired formation while maneuvering. Herein, we present an inchworm-inspired strategy that 

addresses both these tasks concurrently by using anchor robots. The proposed strategy is novel as, by 

dynamically and optimally selecting the anchor robots, it allows the swarm to maximize its 

localization performance while also considering secondary objectives, such as the swarm’s speed. A 

complementary novel method for swarm localization, that fuses inter-robot proximity measurements 

and motion commands, is also presented. Numerous simulated and physical experimental examples 

are included to illustrate our contributions. 

KEYWORDS:  Swarm Robotics; Motion Planning; Swarm Localization; Millirobots, Multi-
Robot Systems. 

1. Introduction 

 Research on swarm robotic systems (SRSs), typically, refers to the study of autonomous teams 

that act as a single entity to achieve objectives that are beyond the capabilities of their individual 

members.1-7 Inspired by biological swarms, they are characterized by their high degree of inter-robot 

coordination and the large number of member robots, employing decentralized, semi-centralized, or 

centralized control architectures.8-11 Correspondingly, such swarm systems, often, balance desirable 

properties associated with decentralized architectures (e.g., scalability to larger teams and robustness 

to the loss of members) with the relative simplicity of centralized control. In academia, SRSs are, 

commonly, investigated using millimeter scale robots, millirobots.12-14 

 An essential element in utilizing SRSs is the planning and control of their motion, which is often 

termed as formation control.15 This process primarily involves the planning and controlling the motion 

of the individual member robots, while the overall swarm travels along a specified trajectory. Swarm 

localization, (i.e., determining the position of all swarm members), in this context, is important, 

especially, as localization errors directly translate to errors in motion commands and ineffective 

formation control. Past research has dealt with these issues (i.e., motion planning and localization), 

mostly, separately – in contrast to our research discussed herein that deals with both issues 

concurrently. 

Approaches to swarm-motion planning, commonly, assume that member robots move from an 

initial formation to a destination one without an overall ‘swarm-shape’ (geometry/ configuration) 

control along a trajectory. They, typically, employ a decoupled two-phased approach: (i) planning the 

trajectories of the robots individually, and (ii) incorporating a separate coordination mechanism to 
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ensure inter-robot collisions are avoided.16-20 Methods that do consider maintaining a desired 

swarm formation, while following a trajectory, on the other hand, are, typically, categorized as 

behavioral,21-24 leader-follower,25-28 or virtual-structure methods.15,29,30 However, these 

approaches are subjected to a variety of constraints on formation as well as trajectory following. 

Other approaches to swarm-motion planning have, for example, investigated methods for area 

coverage and monitoring,31,32 and collision free paths in real time.33 

Approaches to swarm localization, mainly, focus on estimating the relative distances between 

robots,12-14,34,35 or estimating the changes to the swarm’s formation by using sample statistics from 

the swarm.36-39 Methods of estimating the positions and orientations (poses) of all robots in the 

swarm by fusing sensing data and motion commands,40-45 and methods that propose the use of 

external infrastructure, such as stationary beacons46-49 (e.g., GPS, NorthStar) and computer vision 

systems50-52 (e.g., AprilTag, WhyCon, OptiTrack) have also been suggested in the literature. The 

latter ones tend to be more accurate, as the use of external infrastructure would yield the same 

level of uncertainty independent of travelled distance. However, often, external infrastructure may 

not be readily available to assist with localization (e.g., in disaster zones) or even possible to use 

(e.g., unstructured indoor environments). External infrastructures may also require additional 

hardware to be installed on the swarm robots – a difficult task due to the size limitations of 

millirobots used in swarm robotics research12-14.  

The few hybrid approaches to swarm-motion planning that also consider localization, typically, 

advocate the use of anchor robots.53-57 Anchors represent robots that remain stationary, while other 

mobile units move to their destination. Use of anchors may improve the localization accuracy of 

the swarm as they provide stationary references (i.e., landmarks) that can be detected by other 

robots. In the methods discussed in refs. [53-55], the robots implement a leap-frogging strategy, 

where the robots take turns moving toward their destinations. These approaches select intermediate 

goal positions for the robots that maximize localization accuracy,53,54 or plan robot paths that 

minimize the accumulated uncertainty in localization.55 However, commonly, these have been 

developed for smaller teams of three to four robots and their formulation may not be scalable to 

larger swarms.  

A method for localizing larger swarms was proposed in ref. [56], where robots move to their 

destination one at a time and update their respective estimated pose after each movement. This 

update fuses inter-robot proximity measurements, the estimated location of anchor robots, and the 

(single) mobile robot’s motion command through an Extended-Kalman-Filter (EKF). The method 

presented in ref. [57] is, similarly, scalable to larger swarms. In the method, the swarm is randomly 

divided into two equal-sized subgroups that take turns in acting as anchors. After a predetermined 

time, all robots stop to localize themselves by fusing measurements to selected nearby anchors and 

are provided the next set of motion commands. The subgroups, then, switch roles. This two-step 

motion strategy, however, requires the team to be divided into subgroups prior to deployment, 

thus, preventing the swarm from selecting anchors dynamically. This method also suggests that 

subgroups switch roles based on a pre-determined time interval (i.e., it requires robots to use a 

synchronized clock). Furthermore, it is assumed that all mobile robots can ‘see’ all anchors. 

Herein, we propose an inchworm-inspired motion-planning strategy for swarm trajectory 

following that employs dynamic anchor selection. Beyond past methods that use anchors in stricter 

roles, our novel strategy allows (a) the balancing of swarm-motion speed versus accuracy per 

users’ needs (i.e., flexibility), and (b) the use of any localization method (i.e., modularity).  

In contrast to methods that limit the robots to moving one at a time or, for example, through 

two-grouped motion, our proposed strategy achieves flexibility by allowing the swarm to 

dynamically select the number and choice of robots that act as anchors. In addition to meeting a 

motion-speed versus accuracy requirement, adjusting the choice of anchors also allows the swarm 

to meet run-time practical constraints, such as the finite communication range between robots.  
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Abovementioned modularity is achieved by decoupling the two main problems at hand – i.e., 

determining (i) an effective swarm-motion planning strategy, and (ii) an accurate global swarm-

localization method. It is conjectured that accurate swarm motion can only be achieved via accurate 

global localization. The work presented herein, also, marks one of the first swarm-motion planning 

strategies designed to work with any localization method.  

A complementary novel localization method that efficiently and effectively fuses local swarm-

formation estimates with motion information to localize the swarm in a global reference frame is also 

presented herein. In contrast to earlier approaches, this localization method does not require direct 

interactions between (all) the mobile and anchor robots. Namely, it can localize the swarm with partial 

information acquired from robots regarding their respective neighbors, as first discussed in our work 

reported in ref. [45]. 

2. Problem Definition 

The objective of our study is to develop an effective motion-planning strategy for a swarm of 𝑛𝑟 

Robots, 𝑹 = {𝑅𝑖}𝑖=1
𝑛𝑟 , as it travels along a desired trajectory, defined by a time-phased set of (swarm) 

configurations – a point-to-point (PTP) trajectory, Fig. 1 below.  

In imitating an inchworm, the motion-planning sub-strategy to be developed would move the 

swarm between any two successive configurations (i.e., points in PTP motion), Fig. 1, through 

multiple intermediate steps. In each intermediate step, some members of the swarm, designated as 

anchor robots, would remain stationary, while others, designated as mobile robots, would travel to 

the next desired configuration.  

As discussed earlier in the Introduction, and illustrated in our investigations, a key variable in an 

inchworm-inspired sub-strategy is the selection of anchors for every incremental step – namely, the 

selection of both the number of anchors, 𝑛𝑎, as well as the choice of anchor robots, 𝑹𝑎. It is 

conjectured that such selections would have a tangible impact on the performance of an inchworm 

motion, especially, for accurate trajectory tracking. A primary problem addressed in this paper is, 

thus, the optimal selection of anchors during runtime.  

Effective swarm trajectory following, with high fidelity, is also conjectured to depend on accurate 

localization during runtime. However, one must note that, localization performance for swarms that 

utilize inchworm-type trajectory following would be directly affected by the speed requirement for 

the task at hand. Namely, the faster the speed of the swarm, the lower number of anchor robots that 

can be used by the inchworm motion sub-strategy, thus, resulting in reduced localization and motion 

accuracy. This presents us with a dilemma: one would like to have higher number of anchors for better 

motion accuracy, though this would come at a price of slower motion. 

 

Fig. 1. PTP trajectory swarm motion. 
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The abovementioned two issues are closely interdependent and need to be treated concurrently. 

In this context, a measure of swarm speed performance, 𝑃𝑣, is first defined herein by: 

  𝑃𝑣(𝑛𝑎) =
𝑣(𝑛𝑎)

𝑣𝑚𝑎𝑥
, (1) 

where 𝑣(𝑛𝑎), is a representation of the achievable speed of a swarm operating with 𝑛𝑎 anchors, 

normalized with respect to a representation  of the maximum speed achievable by the swarm with no 

anchors, 𝑣𝑚𝑎𝑥.  

Similarly, a measure of swarm localization performance, 𝑃𝑙, is defined by: 

  𝑃𝑙(𝑛𝑎 , 𝑹𝑎) =
𝑒𝑙(𝑛𝑎,𝑹𝑎)

𝑒𝑙,𝑚𝑎𝑥
, (2) 

where 𝑒𝑙(𝑛𝑎, 𝑹𝑎) is the localization error for a swarm operating with a specific selection of anchor 

robots, (𝑛𝑎, 𝑹𝑎), normalized with respect to the worst-case localization error of the swarm with no 

anchors, 𝑒𝑙,𝑚𝑎𝑥.  

 In this work, thus, we propose that, anchor selection for the proposed inchworm sub-strategy 

should aim to maximize an overall swarm motion performance metric, 𝑃𝑠, defined by: 

Maximize: 

  𝑃𝑠(𝑛𝑎, 𝑹𝑎)  = 𝑤𝑣𝑃𝑣(𝑛𝑎)  − 𝑤𝑙𝑃𝑙(𝑛𝑎, 𝑹𝑎), (3) 

subject to: 

  
𝑔(𝑛𝑎 , 𝑹𝑎)  ≤ 0

ℎ(𝑛𝑎 , 𝑹𝑎)  = 0
, (4) 

where 𝑤𝑣 and 𝑤𝑙 are weights denoting the importance of the swarm speed and localization 

performance, (𝑤𝑣 + 𝑤𝑙 = 1), and, 𝑔(𝑛𝑎 , 𝑹𝑎) and ℎ(𝑛𝑎 , 𝑹𝑎) represent swarm motion constraints 

(e.g., connectivity, speed, and desired configuration feasibility).  

 One can recall that Eq. (3) needs to be solved in an online manner. Furthermore, in addition, the 

swarm-localization process also needs to be formulated for runtime solution with potentially limited 

measurement data. 

3. Overview of Proposed Swarm-Motion Strategy 

As described above, the objective of our study is to develop an effective motion-planning strategy for 

a swarm to travel along a desired trajectory, defined by a time-phased set of (swarm) configurations 

– a point-to-point (PTP) trajectory, Fig. 1. In this context, the inchworm-inspired motion sub-strategy 

moves the swarm between two successive configurations, as part of the desired PTP trajectory, over 

multiple incremental steps. The inchworm sub-strategy (a) dynamically selects the optimal anchor 

robots for each successive move between two desired configurations in order to maximize the swarm’s 

overall motion performance, detailed in Section 4 below, and (b) it also re-estimates the swarm 

configuration after every incremental move of the inchworm motion, detailed in Section 5 below. 

Continuous repetition of the inchworm-inspired motion sub-strategy allows the swarm to follow the 

desired PTP trajectory. 

 An overview of the proposed inchworm sub-strategy between two successive configurations, in 

the context of PTP swarm motion, is presented in Fig. 2 below. In this figure and onward, in this 

paper, any swarm configuration, 𝐶, is defined as the set of all global robot positions (in the swarm): 

  𝐶 = { 𝒙 
 

𝑖}𝑖=1
𝑛𝑟 , (5) 

where 𝒙 
 

𝑖 = ( 𝑥 
 

𝑖 , 𝑦 
 

𝑖) represents the position of Robot i with respect to the global reference frame, 

  
 . 
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Fig. 2.  The proposed swarm-motion strategy in the context of swarm-motion execution. 

In Fig. 2 above, for a given ‘couple’ of successive configurations, i.e., the swarm’s (first) current 

and (next) desired configurations, 𝐶𝑐 and 𝐶𝑑, respectively, the proposed inchworm sub-strategy: 

 (i)  Selects the optimal set of anchor robots, (𝑛𝑎 , 𝑹𝑎)*, to use in all the steps of the incremental 

(iterative) motion toward 𝐶𝑑, and, consequently, determines the necessary number of steps to 

move the swarm from 𝐶𝑐 to 𝐶𝑑, 𝑛𝑠; 

  Sets iteration/step number 𝑘 =  1; 

 (ii) Calculates the motion commands for the (first) set of mobile robots, based on 𝐶𝑐 and 𝐶𝑑, 𝒖1; 

 (iii)  Moves (only) the mobile robots, for the iteration at hand, 𝑹𝑚𝑘, to their destination on 𝐶𝑑, based 

on the latest motion commands, 𝒖𝑘, while the anchors, 𝑹𝑎𝑘, remain stationary – it must be 

noted that 𝐶𝑑 would only be achieved in approximation due to a multitude of errors (including 

robot motion errors);  

 (iv) Re-localizes the swarm, after the motion of all the mobile robots has been completed, and 

obtains an estimate of the latest (true) swarm configuration (filled dots in Fig. 3(b)-(d)), 𝐶̂𝑡𝑘; 

   If there are remaining mobile robots to move, i.e., 𝑘 < 𝑛𝑠, sets iteration number 𝑘 = 𝑘 + 1 and 

continues to (v) below, otherwise, sets 𝐶𝑐 = 𝐶̂𝑡𝑘 and exits the loop. 

 (v)  Re-calculates the motion commands for the next set of mobile robots based on 𝐶𝑑 and the latest 

𝐶̂𝑡𝑘, and returns to (iii) above.  

 It can be noted that the optimal anchor selection step of the proposed swarm-motion strategy is 

completed in a centralized manner. The remaining components, which include the calculation and 

execution of motion commands, and the necessary steps for re-localization, however, can be 

completed in a decentralized manner to promote scalability and robustness. 

 

Current configuration, 𝐶𝑐

Desired configuration, 𝐶𝑑
 

Select optimal anchor robots  𝑛𝑎 , 𝑹𝑎
 

𝑘 = 1

Re-localize the swarm   𝐶̂𝑡𝑘

Is 𝑘 < 𝑛𝑠?

Move mobile robots, 𝑹𝑚𝑘, based on latest motion 

commands, 𝒖𝑘, while anchors, 𝑹𝑎𝑘, remain stationary 

𝑘 = 𝑘 + 1

Yes

Calculate updated motion 

commands  𝒖𝑘

No

𝐶𝑐 = 𝐶̂𝑡𝑘

Calculate first set of motion commands  𝒖1
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(a) (b) 

  

(c) (d) 

Fig. 3. The proposed inchworm-motion sub-strategy: (a) current and desired configurations, 𝐶𝑐, 𝐶𝑑, (b)-(d) 

intermediate estimated swarm configurations (filled circles), 𝐶̂𝑡𝑘 for steps 𝑘 = 1, 2, 3, respectively. 

 The proposed inchworm sub-strategy is illustrated in Fig. 3 above, for a swarm of three robots, 

with one mobile robot at a time.  The motion strategy is novel in that it allows the swarm to 

dynamically select the (number and choice of) anchor robots as it travels through a sequence of 

configurations. This (flexibility) feature is used herein to maximize the motion performance (speed 

and localization) of the swarm, Eq. (3). One can note that dynamic anchor selection could also 

facilitate the consideration of other objectives, including, for example, maintenance of a desired 

degree of connectivity in the swarm. Additionally, repeatedly estimating the intermediate 

configurations of the swarm allows us to enhance the estimated position of anchor robots and, as a 

result, provide more accurate motion commands.   

4. Proposed Inchworm-Motion Sub-Strategy 

The inchworm-motion sub-strategy outlined above requires the dynamic selection of optimal anchor 

robots for every step of (multi-step) motion between two successive swarm configurations. Herein, 

we present a novel search method which determines (𝑛𝑎, 𝑹𝑎)* that maximize the swarm’s motion 

performance, Eq. (3), as it moves from 𝐶𝑐 to 𝐶𝑑.  

4.1. Optimization metrics for anchor selection 

In Eq. (1), for the proposed inchworm-motion sub-strategy, the swarm’s speed can be represented as 

the inverse of the number of steps required to reach to desired configuration, 𝑛𝑠: 

  𝑣(𝑛𝑎) =
1

𝑛𝑠(𝑛𝑎)
 , (6) 

where  

  𝑛𝑠(𝑛𝑎) =
𝑛𝑟

𝑛𝑟−𝑛𝑎
. (7) 

As per Eq. (6), the maximum achievable swarm speed corresponds to a swarm operating with zero 

anchors (i.e., 𝑛𝑎 = 0, 𝑣𝑚𝑎𝑥 = 𝑣(0) =  1). It should also be noted that only anchor numbers that result 

in an integer number of incremental motion steps, 𝑛𝑠, are considered feasible. For example, for a 

swarm of 𝑛𝑟 = 10 robots, the feasible number of anchors would be 𝑛𝑎 = 0, 5, 8, or 9. 

 The localization error of the swarm for a given choice of anchors, in turn, can be defined as the 

mean distance between the true and estimated positions of all robots once all robots have reached 𝐶𝑑 

(i.e., all 𝑛𝑠 steps are completed): 

  
 

 

𝐶𝑐 𝐶𝑑

  
 

 

𝒖1

𝑹𝑎1
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𝑹𝑚 

𝑹𝑎 

𝒖 

  
 

 

𝑹𝑚 

𝑹𝑎 
𝒖 
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  𝑒𝑙(𝑛𝑎 , 𝑹𝑎)  =
1

𝑛
∑ | 𝒙 

 
𝑡𝑛𝑠𝑖
 − 𝒙̂ 

 
𝑡𝑛𝑠𝑖
 |

𝑛𝑟
𝑖=1 , (8) 

where 𝒙 
 

𝑡𝑛𝑠𝑖
  and 𝒙̂ 

 
𝑡𝑛𝑠𝑖
  are the true and estimated positions of Robot i in Configurations 𝐶𝑡𝑛𝑠

 and 

𝐶̂𝑡𝑛𝑠
, respectively. It is important to clarify that, in our simulations, 𝐶𝑡𝑛𝑠

 is calculated based on the 

noisy motion of the individual robots, whereas 𝐶̂𝑡𝑛𝑠
 is an estimate of this (localized) swarm 

configuration, after the last step, using the proximity sensors on the individual robots.  

 A thorough investigation into anchor selection, which included extensive simulated experiments, 

verified that the number and choice of anchors have a meaningful impact on swarm-motion speed and 

post-movement localization accuracy, Eq. (6) and Eq. (8), respectively. These investigations have 

also indicated that the worst-case localization error would correspond to a swarm operating with no 

anchors (i.e., 𝑛𝑎 = 0, 𝑒𝑙,𝑚𝑎𝑥 = 𝑒𝑙(0, ∅)). The results of these investigations are summarized below. 

4.1.1. Effect of the Number of Anchors. In this paper, it is conjectured that the number of anchors 

affects both the speed and localization performance of the swarm. With a greater number of anchors, 

fewer mobile robots can move at any one time and the swarm must go through more steps to reach 

the desired configuration. As noted above, the swarm’s speed can be represented as the inverse of the 

number of steps required to completely move the swarm to a desired configuration, Eq. (6). This 

representation suggests that the swarm’s speed and, thus, its corresponding performance, 𝑃𝑣, decreases 

linearly with increased number of anchors. Furthermore, the maximum achievable speed of the swarm 

corresponds to one’s operating with no anchors. 

 Regarding swarm localization performance, extensive series of simulations were conducted. In 

these, a swarm of 𝑛𝑟 robots was instructed to move from one (same) starting configuration, 𝐶𝑐, to 

another (random) desired configuration, 𝐶𝑑, using the proposed inchworm motion strategy. For each 

incremental motion step, a fixed number of 𝑛𝑎 robots were designated as anchors while the other 

robots moved directly and concurrently to their next destination. Once the inchworm motion was 

completed, noisy sensor measurements were simulated and used to estimate the swarm’s 

configuration. For each motion simulation experiment, a swarm localization error, 𝑒𝑙(𝑛𝑎, 𝑹𝑎) was, 

then, calculated through Eq. (8). 

 1,000 random experiments were simulated for a swarm size of 𝑛𝑟 = 10 robots. Fig. 4(a)-(d) below 

show the localization error obtained for cases with (a) zero, (b) five, (c) eight, and (d) nine anchors, 

respectively. All simulations were subjected to different levels of noise in their inter-robot sensing 

and motion-command executions. The results are plotted as localization error versus average distance 

traveled by the robots in the swarm.  

 The simulation results indicate that an increase in the number of anchors reduces localization error, 

though, sub-linearly (i.e., there are diminishing returns to designating more robots as anchors). The 

results also show that the worst-case localization error corresponds to the swarm that is operating 

without the use of anchor robots (i.e., 𝑒𝑙,𝑚𝑎𝑥 = 𝑒𝑙(0, ∅)) 

    

(a) (b) (c) (d) 

Fig. 4. Swarm localization errors for (a) zero, (b) five, (c) eight, and (d) nine anchors, respectively. 
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4.1.2. Effect of the Choice of Anchors. It is further conjectured, herein, that the specific choice of 

anchors does not have a tangible impact on the speed of the swarm, though, it could affect localization. 

A series of simulated experiments was, thus, conducted to validate the conjecture that the choice of 

anchors indeed has an impact on swarm-localization performance. In this set of experiments, random 

desired configurations were generated. Then, for each random desired configuration, corresponding 

swarm inchworm motion was simulated for all possible combinatoric choices of anchors for a fixed 

𝑛𝑎. The results of simulated motion and the subsequent estimations were evaluated in terms of the 

localization error, 𝑒𝑙(𝑛𝑎, 𝑹𝑎), Eq. (8). 

 1,000 random experiments were simulated for a swarm size of 𝑛𝑟 = 10 robots, where 𝑛𝑎 = 5 

robots remain stationary at a time. For such a case, there exist a total of 252 possible 5-robot anchor 

selections. All simulations were initialized with the same uncertain estimate of the swarm’s initial 

configuration, 𝐶𝑐. All simulations were also subjected to different levels of noise in their inter-robot 

sensing and motion command executions.  

 Fig. 5(a)-(d) below show the localization errors for the (a) no anchors, (b) random anchors, (c) 

global worst anchors, and (d) global best anchors cases, respectively. The results are plotted as 

localization error versus average distance traveled by the robots in the swarm. A global worst/best 

represent the results of the choice of anchors that achieved the highest/lowest localization error for a 

given desired configuration, respectively. Moreover, random anchors represent the localization error 

associated with a choice of anchors that was selected randomly from the 252 possible choices. The 

results indicate that, for a given set of possible anchors, there exists an optimal sub-set to choose from 

that would result in the minimum possible localization error, 𝑹𝑎
 (𝑛𝑎). 

    

(a) (b) (c) (d) 

Fig. 5. Swarm localization errors for different combinations of anchors: (a) zero anchors, (b) random anchors, 

(c) global worst anchors, and (d) global best anchors. 

4.2. Search algorithm 

The proposed search algorithm for (𝑛𝑎 , 𝑹𝑎)* comprises two nested loops, Fig. 6 below. Assuming 

knowledge of the swarm’s initial (pre-motion) configuration, 𝐶𝑐, the search begins by, first, 

determining 𝑣𝑚𝑎𝑥 and 𝑒𝑙,𝑚𝑎𝑥. Then, the outer optimization loop (Fig. 6, red dashed line) seeks the 

optimal number and choice of anchors by searching through the space of all feasible number of anchor 

robots. The inner loop (Fig. 6, blue dashed line), in turn, determines the best choices of anchors for 

𝑛𝑎 considered by the outer loop. 

4.2.1. Outer optimization loop. Determination of the optimal number of anchors, 𝑛𝑎
  could be 

conducted by searching through the space of all feasible numbers using a simple (single, discrete-

variable) search engine. For a (feasible) number of anchors considered in this outer loop, the 

corresponding optimal choices of anchors, 𝑹𝑎
 (𝑛𝑎), would, then, be determined through the inner 

optimization loop described below.  

 One must note that the expected localization error of the swarm with any number of anchors at 

hand, 𝑒𝑙(𝑛𝑎, 𝑹𝑎
 (𝑛𝑎)), would also be returned from the inner loop. This measure would, then, be used 

in Eq. (3) to calculate the swarm’s overall motion performance for the number of anchors considered 

in this outer loop, to eventually determine the final set of optimal anchors, (𝑛𝑎 , 𝑹𝑎)*. 
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Fig. 6.  The proposed optimal anchor robot selection method. 

4.2.2. Inner optimization loop. For every feasible number of anchors considered, 𝑛𝑎, a search is 

carried out to determine the corresponding choice of anchors that yield minimum localization error. 

Namely, the inner optimization loop solves for: 

  𝑹𝑎
 (𝑛𝑎) = arg min

𝑹𝑎
 (𝑛𝑎)

𝑒𝑙(𝑛𝑎 , 𝑹𝑎
 (𝑛𝑎)). (9) 

 Calculating the expected localization error for a given number and choice of anchors, 

𝑒𝑙(𝑛𝑎, 𝑹𝑎(𝑛𝑎)), consists of simulating the inchworm motion, and computing the localization error 

once all robots execute their movement commands. All steps of the simulated inchworm motion, 

which include intermediate localization, are perturbed with noisy motion and proximity 

measurements to represent a realistic scenario.  

 One must note that the optimization problem at hand, Eq. (9), is an NP-hard combinatoric 

optimization problem with possible solutions numbering: 

  𝑛𝑠𝑜𝑙 = ∏ (
𝑛 − 𝑘𝑛𝑚

𝑛𝑚
)

𝑛𝑠𝑡𝑒𝑝𝑠−1

𝑘=0
, (10) 

where 𝑛𝑚 is the number of mobile robots for each step of motion (𝑛𝑚 = 𝑛𝑟 − 𝑛𝑎). It is, thus, 

recommended to use a combinatoric optimization method, such as a variation of the genetic algorithm, 

to guide which anchor choices to evaluate in this inner optimization loop. Furthermore, it is 

recommended to seed the search engine with high-quality initial solutions to expedite the 

optimization. A heuristic to produce one such high-quality initial solution, developed through our 

work, is proposed below. 

/

Current configuration, 𝐶𝑐

Desired configuration, 𝐶𝑑
 

No

Optimal anchor selection, 𝑛𝑎 , 𝑹𝑎
 

Yes
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4.2.3. Proposed Heuristic for Initial-Guess Selection. An initial guess of anchor robots can be chosen 

based on a variety of heuristics. Herein, we conjecture that the optimal choice of anchors for each 

incremental step towards the desired configuration is dependent on the underlying characteristics of 

the swarm’s post-motion configuration.  

 In this regard, we propose two measures that encapsulate such characteristics: the expected 

distribution of the anchor robots, and the expected separation between the anchor and mobile robots. 

Namely, it is expected that the choice of anchors that maximize distribution and minimize separation 

in the post-motion configuration would result in relatively high localization accuracy. This heuristic 

was developed based on the proposed localization method used for the simulations in Section 4.1. 

Analysis of this method, detailed in Section 5 below, indicates that maximizing distribution and 

minimizing separation could maximize the influence of anchor robots and allow the swarm to achieve 

reduced localization errors. 

 A swarm’s distribution is a measure of the area covered by the anchor robots. The swarm 

distribution,  𝑑𝑘, after k steps of the inchworm sub-strategy, can be defined as the average distance 

from the centroid of all anchor robots to all the individual anchors: 

  𝑑𝑘(𝑹𝑎𝑘) =
1

𝑛𝑎
∑ (| 𝒙̂  

 
𝑡𝑘𝑖
  − 𝒙̅̂ 

 
𝑡𝑘𝑹𝑎𝑘

  |) 
𝑖∈𝑹𝑎𝑘

, (11) 

where 𝑹𝑎𝑘 are all anchor robots for the kth step, and 𝒙̅̂ 
 

𝑡𝑘𝑹𝑎𝑘

   is the estimated centroid of these anchors.  

 A swarm’s separation, conversely, is used to capture the connectivity between anchor and mobile 

robots. Separation, 𝑠𝑘, after k steps of the inchworm sub-strategy, can be defined as the difference 

between the centroid of the cluster of anchor robots and the centroid of the cluster of mobile robots: 

  𝑠𝑘(𝑹𝑎𝑘) =  | 𝒙̅̂ 
 

𝑡𝑘𝑹𝑎𝑘

  − 𝒙̅̂ 
 

𝑡𝑘𝑹𝑚𝑘

  |, (12) 

where, 𝒙̅̂ 
 

𝑡𝑘𝑹𝑚𝑘

   is the centroid of the mobile robots used in the kth step of the inchworm sub-strategy. 

For this initial heuristic, the position of mobile robots is calculated based on their provided motion 

commands. 

The heuristic proposed for determining a high-quality initial solution for each step is, thus: 

Maximize: 

  𝑝𝑎𝑘(𝑹𝑎𝑘) = 𝑑𝑘(𝑹𝑎𝑘) +
1

𝑠𝑘(𝑹𝑎𝑘) 
. (13) 

 Results of extensive series of simulations in our work, as will be detailed in Appendix A, illustrated 

that anchors determined through the proposed heuristic would outperform random choices that can be 

used as an initial guess. 

5. Proposed Swarm-Localization Method 

The proposed inchworm motion sub-strategy requires the swarm’s configuration to be re-estimated 

after each incremental step, Section 3. Herein, we present a novel localization method that obtains an 

estimate of the swarm’s configuration, 𝐶̂𝑡
 , by fusing an estimate of the swarm’s (true) configuration, 

obtained based on motion commands, 𝒖𝑘, 𝐶̂𝑡𝑢
 , with an estimate of the swarm’s topology, obtained 

based on inter-robot proximity measurements, 𝑇̂𝑡𝑝. For simplicity, the index k is omitted in the 

following description of the localization method. 

A swarm topology, as noted above, defines the positions of all the robots with respect to a local 

swarm frame,   
𝐿 , Fig. 7 below: 

  𝑇 = { 𝒙 
𝐿

𝑖}𝑖=1
𝑛𝑟 . (14) 
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Fig. 7.  Swarm topology. 

As shown in Fig. 7 above, the swarm’s topology can be related to its configuration through the pose 

of the local swarm frame with respect to the global frame,   
 , ( 𝒙 

 
𝐿, 𝜃 

 
𝐿). Namely, the position of 

Robot i with respect to   
𝐿  can be transformed to   

  through: 

  𝒙𝑖
 

 
 ( 𝒙𝑖

 , 𝒙 
 

𝐿, 𝜃 
 

𝐿 
𝐿 ) = 𝒙 

 
𝐿 + 𝑅 

 
𝐿( 𝜃 

 
𝐿) 𝒙𝑖

 , 
𝐿  (15) 

where 𝑅 
 

𝐿( 𝜃 
 

𝐿) is the rotation matrix corresponding to the orientation of   
𝐿  with respect to   

 : 

  𝑅 
 

𝐿( 𝜃 
 

𝐿) = [
cos( 𝜃 

 
𝐿) − sin( 𝜃 

 
𝐿)

sin( 𝜃 
 

𝐿) cos( 𝜃 
 

𝐿)
].  (16) 

 Fig. 8 below presents an overview of the proposed two-phase localization method. Estimates of 

the swarm’s configuration and topology are acquired in Phase 1 and subsequently fused in Phase 2. 

The proposed localization method detailed below is novel in that it does not require direct 

interactions between all mobile and anchor robots. As long as the post-motion swarm configuration 

remains connected (i.e., each robot can be sensed by at least one neighbor), the described method is 

applicable. This feature simplifies swarm trajectory planning and control, as the required degree of 

swarm-connectivity constraint is lower than would be for other localization methods. It must also be 

noted that, although the proposed localization method was developed, primarily, for our inchworm 

swarm-motion strategy, it would, certainly, be usable by all robotic swarms equipped with the 

necessary sensing technology. 

 

Fig. 8.  The proposed swarm-localization method. 
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5.1. Phase 1 – Data acquisition 

In Phase 1, (1) a preliminary configuration estimate, in the global (motion) frame,   
 , and (2) a 

topology estimate, in the local (swarm) frame,   
𝐿 , are obtained independently.  

5.1.1. Phase 1.1: Preliminary swarm-configuration estimation. A preliminary estimate of the swarm’s 

configuration, after an incremental step of the inchworm sub-strategy, can be determined by assuming 

the motion commands of the mobile robots were executed with no uncertainty. A vector representing 

the change in position of Robot i, 𝒖̂𝑖, is used in our formulation. Since it is assumed that no odometry 

is available, this vector represents the difference between Robot i’s desired position, 𝒙  
 

𝑑𝑖
 , and pre-

motion estimated position, 𝒙̂  
 

𝑡0𝑖
  , respectively. For the mobile robots 𝑹𝑚: 

  𝒖̂𝑖 = 𝒙  
 

𝑑𝑖
 − 𝒙̂  

 
𝑡0𝑖
  ,  ∈ 𝑹𝑚, (17) 

whereas, for anchor robots, 𝑹𝑎: 

  𝒖̂𝑖 = 0,  ∈ 𝑹𝑎 , (18) 

A preliminary estimate of the post-motion configuration of the swarm, 𝐶̂𝑡𝑢
 = { 𝒙̂ 

 
𝑡𝑢𝑖
  }

𝑖=1

𝑛𝑟
, can, then, 

be acquired by applying the above defined motion commands: 

  𝒙̂ 
 

𝑡𝑢𝑖
  = 𝒙̂  

 
𝑡0𝑖
  + 𝒖̂𝑖 ,  ∈ {1, , 𝑛}. (19) 

Fig. 9 below presents a preliminary configuration estimate acquired for the first step of the inchworm 

sub-strategy in Fig. 3, after the motion of R1.  

Due to the uncertainty in motion command execution, the swarm configuration estimated via 

Eq. (19) would have uncertainty associated with it, denoted as Δ𝑢 = { 𝛿 
 

𝑢𝑖}𝑖=1
𝑛𝑟 , where 𝛿 

 
𝑢𝑖 is the 

uncertainty in the estimated position of Robot i. This uncertainty is dependent on the motion model 

of individual robots.  

 
Fig. 9.  A preliminary swarm-configuration estimate. 

5.1.2. Phase 1.2: Swarm-topology estimation. The post-motion topology of the swarm, 𝑇̂𝑡𝑝 =

{ 𝒙̂ 
𝐿

𝑡𝑝𝑖
  }

𝑖=1

𝑛𝑟
, can be estimated by fusing inter-robot proximity measurements acquired by all the robots. 

These measurements comprise distance and bearing information describing the relative locations of 

neighboring robots. Namely, Robot i’s observation of Robot j, can be described by: 

   𝑖  
 = (𝜌𝑖 , 𝜑𝑖  

 ). (20) 

where 𝜌𝑖  and 𝜑𝑖  are, respectively, the distance and bearing of Robot j, with respect to Robot i, as 

observed by Robot i. 

Herein, it is proposed to fuse the inter-robot proximity measurements using a modified version 

of a swarm-topology estimation approach previously developed in our lab at the University of 

Toronto.45 In this approach, data fusion is achieved by clustering all observations of individual 

robots and calculating respective centroid positions. The primary modification made herein is a 

reformulation of the clustering objective function, as will be detailed in Appendix B.  

It should be noted that, in addition to a swarm topology estimate, 𝑇̂𝑡𝑝, the proposed method 

also provides a measure of topology-estimation uncertainty, Δ𝑝 = { 𝛿 
 

𝑝𝑖}𝑖=1
𝑛𝑟 , where 𝛿 

 
𝑝𝑖 is the 

uncertainty in the estimated position of Robot i. 
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An example estimated topology, with respect to   
𝐿 , that was acquired using sensing data gathered 

after R1 has completed its move (Fig. 3(b)) is shown in Fig. 10 below.  

 
Fig. 10.  A post-motion swarm-topology estimate. 

5.2. Phase 2 – Data fusion 

Phase 2 of the proposed swarm-localization method estimates the post-motion swarm configuration 

by superimposing 𝐶̂𝑡𝑢
  and 𝑇̂𝑡𝑝. Namely, the proposed method seeks to determine the pose for   

𝐿  

defined with respect to   
  that minimizes the distances between corresponding robot positions in the 

post-motion swarm configuration and topology estimates: 

  ( 𝒙𝐿
 

 
 , 𝜃𝐿

 
 

 ) = arg min
( 𝒙 
𝐺

𝐿, 𝜃 
𝐺

𝐿)
∑ 𝑤𝑖| 𝒙̂  

 
𝑡𝑝𝑖
  ( 𝒙̂  

𝐿
𝑡𝑝𝑖
  , 𝒙 

 
𝐿, 𝜃 

 
𝐿) − 𝒙̂  

 
𝑡𝑢𝑖
 |

 
,

𝑛𝑟
𝑖=1  (21) 

where 𝒙̂  
 

𝑡𝑝𝑖
  ( 𝒙̂  

𝐿
𝑡𝑝𝑖
  , 𝒙 

 
𝐿, 𝜃 

 
𝐿) is the position of Robot i based on inter-robot proximity measurements, 

transformed to   
  through Eq. (15) 

 The weights of the superimposition step are selected to reflect the uncertainty in the estimated 

positions in the preliminary estimates from Phase 1. Specifically, the weights are considered to be 

inversely proportional to (a) the uncertainty in robot positions in the swarm-topology estimate, 𝛿 
 

𝑝𝑖, 

and (b) the uncertainty in the motion command execution of the same robot, 𝛿 
 

𝑢𝑖. The weight 

associated with Robot i is, thus, defined as: 

  𝑤𝑖 =
1

𝛿 
 

𝑝𝑖+ 𝛿 
 

𝑢𝑖
. (22) 

This scheme, typically, results in the positions of anchor robots being weighted higher than the 

positions of mobile robots. This is due to their lack of motion and higher positional certainty in the 

preliminary configuration estimate. 

 Upon completion of the superimposition step, a robot’s updated position can be calculated as its 

mean position in the superimposed configuration and topology: 

  𝒙̂  
 

𝑡𝑖 =
𝒙̂  

𝐺
𝑡𝑝𝑖
  ( 𝒙̂  

𝐿
𝑡𝑝𝑖
  , 𝒙𝐿

 
 

𝐺 , 𝜃𝐿
 

 
𝐺 )+ 𝒙̂  

𝐺
𝑡𝑢𝑖
 

 
,  ∈ 1, , 𝑛𝑟 . (23) 

The set of all final estimated positions form the final swarm configuration estimate, 𝐶̂𝑡
  

 An example showing the superimposition of the swarm topology estimate, Fig. 10, onto the swarm 

configuration estimate after the first step of inchworm motion in Fig. 9, is shown in Fig. 11 below. It 

can be noted that robots which are further from the center of the swarm’s topology have a higher 

influence on the superimposition step and, in turn, on the estimated position of the swarm’s topology. 

Namely, small changes in their position results in a significant increase of the objective function in 

Eq. (21), when compared to small changes in the position of robots that are close to the swarm’s 

center. This feature is used, herein, to select the heuristic for the choice of anchors, Section 4. The 

proposed heuristic effectively selects robots that are far from the swarm’s center (i.e., maximize 

distribution) as anchors, and robots that are close to the swarm’s center (i.e., minimize separation) as 

mobile robots. As a result, anchors that have a higher position certainty have a larger influence on the 

estimated position of the swarm topology and, thus, reduce the localization errors of the swarm. 

𝒙𝑡𝑝  
𝐿

  
𝐿

 

𝒙𝑡𝑝  
𝐿

𝒙𝑡𝑝1 
𝐿
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Fig. 11. Updated post-motion swarm configuration. 

5.3. Comparison to Graph SLAM 

One may note similarities between the proposed localization method and Graph SLAM58 – a common 

method for addressing the single robot simultaneous localization and mapping (SLAM) problem. 

Namely, if applied to swarm localization, Graph SLAM could equate anchors to stationary landmarks 

and estimate the swarm’s configuration by clustering the inter-robot sensor measurements while 

simultaneously superimposing them onto the executed motion commands. This would differ from the 

sequential approach proposed in this paper in that, in Graph SLAM method, inter-robot sensor 

measurements and motion commands are considered simultaneously. Namely, in our method, inter-

robot sensor measurements are clustered in Phase 1.2 (Swarm-topology estimation) and superimposed 

onto motion commands in Phase 2 (Data fusion).  

 There are two main advantages to the sequential nature of the proposed localization method: (i) 
design modularity, and (ii) consideration of millirobot limitations. The design modularity of the 

proposed localization method is achieved as the inter-robot sensor measurements and motion 

commands are considered in two independent steps. This simplifies future improvements and allows 

for the parallel development of pertinent solutions – for example, different clustering functions for 

topology estimation, or different approaches to estimating the position of the swarm’s topology may 

be considered. The sequential nature of the proposed localization method also considers the 

communication and computational limitations of millirobots used in swarm robotic research. Namely, 

considering inter-robot sensor measurements and motion commands separately allows for reducing 

the amount of information that would need to be shared, within a swarm network, and processed by a 

central (e.g., leader) robot. This reduces the risk of saturating the communication channels, memory, 

and processing power of millirobots, and yields in a more feasible localization method. 

6. Illustrative Examples 

Herein, we present multiple simulated and physical experiments illustrating the proposed PTP 

inchworm-inspired swarm motion strategy.  

6.1. Swarm Motion Simulations 

6.1.1. A detailed trajectory-following example. The example considered herein aims to illustrate the 

details of the proposed inchworm sub-strategy in following the desired PTP trajectory in Fig. 12 

below. During the inchworm motion, the optimal number and choice of anchor robots are selected 

using the method detailed in Section 4, with performance weights chosen as 𝑤𝑣 = 0.5, and 𝑤𝑙 = 0.5. 

All motion commands, comprising straight-line paths, were subjected to zero-mean normally-

distributed noise. Similarly, inter-robot proximity measurements, were also subjected to zero-mean 

normally-distributed noise. 

 Detailed results for motion of the simulation are illustrated in Fig. 13 below, where the hollow 

circles represent the locations of robots in all past (red/desired, green/estimated, and blue/true) swarm 

configurations, while the solid circles represent the locations of robots in all next (desired, estimated, 

and true) configurations in each step of motion. In this example, the optimal anchor selection method 

chose 𝑛𝑎 = 5 anchors to achieve all three desired configurations: for 𝐶𝑑1, the optimal anchor robots 

for the first step of the two-step motion were 𝑹𝑎1 = {𝑅 , 𝑅4, 𝑅6, 𝑅9, 𝑅10}. 

6.1.2. Another trajectory-following example. The proposed inchworm sub-strategy is further 

demonstrated herein for an example trajectory comprising 50 desired configurations, Fig. 14 below. 
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As one can note, the proposed strategy achieves high trajectory-following fidelity, in the global 

motion frame, over a substantial distance travelled, without any feedback. 

 
Fig. 12. An example PTP trajectory. 

 
(a) 

 
(b) 

 
(c) 

Fig. 13. PTP swarm trajectory – Example 1: swarm configurations after achieving the (a) first, (b) second, and 

(c) third configuration, respectively. 

 

  
Fig. 14. PTP swarm trajectory – Example 2. 
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6.2. Swarm Motion Experiments 

In the experiments detailed herein, a swarm of millirobots (mROBerTOs) is instructed to follow a 

desired (swarm) trajectory – defined by a set of time-phased distinct configurations. Members of the 

swarm individually translate and rotate along the given trajectory to achieve the desired 

configurations, successively.  

 mROBerTO 2.0, developed in our lab at the University of Toronto,12-14 is a millimeter-scale robot 

with a swarm sensing module that allows it to accurately measure the relative proximity of nearby 

robots through IR communication, Fig. 15 below.  

 
Fig. 15. mROBerTO 2.0. 

For swarm localization, inter-robot proximity measurements, obtained by all robots 

individually in a decentralized manner, are sent to a host computer through ANT communication. 

Here, they are used to estimate the configuration of the swarm through the process detailed in 

Section 5. The central computer is also used to select the optimal anchors through the process 

detailed in Section 4, and to provide updated motion commands for the mobile robots in each step 

of the inchworm motion. The provided motion commands are executed by the robots in an open-

loop and decentralized manner without any intervention from the host computer. 

The specific experiments discussed herein were conducted with a swarm of 𝑛𝑟 = 6 

mROBerTOs that were instructed to follow a trajectory with 𝑛𝑑 = 9 desired configurations. With 

performance weights chosen as 𝑤𝑣 = 0.5, and 𝑤𝑙 = 0.5, the swarm used 𝑛𝑎 = 3 anchors to move 

between all successive configurations.  

Fig. 16 below illustrates the swarm’s final desired (red), true (blue), and estimated (green) 

configurations, once the trajectory is completed. Fig. 17(a)-(b) below are the corresponding plots 

of the swarm localization and trajectory following errors versus the swarm’s average total motion 

after reaching each successive configuration in the desired trajectory. One may note that the 

swarm’s true configuration was measured using an external measurement device. As expected, 

motion errors increase as the swarm travels away from its original configuration in open-loop 

control. However, as claimed in this paper, the proposed inchworm motion strategy keeps these 

errors at very manageable levels. 

 

Fig. 16. Experimental results for swarm localization. 

Front View

10 mm



An inchworm-inspired motion strategy for robotic swarms 17 

 

  

(a) (b) 

Fig. 17. Experimental results: (a) localization error, (b) trajectory-following error. 

7. Comparative Analysis 

The proposed inchworm sub-strategy is compared, herein, to an alternate anchor-based method 

detailed in ref. [57]. The latter divides the swarm into two equal sized subgroups at deployment. The 

subgroups remain constant as the swarm follows a trajectory, namely, their number and choice of 

member robots do not change.  

 The comparative analysis was conducted over a series of simulations. In each, a PTP swarm 

trajectory, comprising 𝑛𝑑 = 100 desired configurations, was followed. The (cumulative) trajectory-

following performance was calculated as trajectory following error at the very last swarm 

configuration (i.e., when the trajectory was completed): 

  𝑃𝑓 =
1

𝑛
∑ | 𝒙 

𝐺
𝑡𝑓𝑖
 − 𝒙 

𝐺
𝑑𝑓𝑖
 |

𝑛𝑟
𝑖=1

𝑚̅ 
, (24) 

where 𝒙 
 

𝑡𝑓𝑖
  and 𝒙 

 
𝑑𝑓𝑖
  are, respectively, the final true and desired positions of Robot i at 𝐶𝑑𝑛𝑑

. The 

trajectory-following performance metric is normalized with respect to the average total motion of all 

robots, 𝑚̅: 

  𝑚̅ = ∑ (
1

𝑛
∑ | 𝒙 

 
𝑡𝑛𝑠𝑗𝑖
 − 𝒙 

 
𝑡𝑛𝑠(𝑗−1)𝑖
 |

𝑛𝑟
𝑖=1 )

𝑛𝑑
 =1  (25) 

where 𝒙 
 

𝑡𝑛𝑠𝑗𝑖
  is the true position of Robot i once all intermediate steps to 𝐶𝑑  have been completed.  

 The results of the simulations are detailed in Table I below. In these simulations, the desired swarm 

trajectories for a swarm of 𝑛𝑟 = 10 robots were generated randomly, changing pose and topology at 

each successive desired configuration. In the inchworm experiments, the optimal anchors were 

selected through the proposed strategy detailed in Section 4, with 𝑤𝑣 = 0.5, and 𝑤𝑙 = 0.5. The anchor 

robots for the method detailed in ref. [57], however, were selected randomly. Namely, the swarm was 

randomly divided into two equal sized subgroups at deployment (i.e., 𝑛𝑎 = 5). All simulations were 

subjected to random noise in motion command execution and sensing data, as detailed in Section 6 

above. 

Table I. Comparative Analysis – Results. 

 Trajectory Following Performance, 𝑃𝑓 

Strategy Sample-Mean Sample-Std-dev 

Ref. [57] 0.0673 0.0500 

Our Method 0.0477 0.0354 

 Comparison of the results illustrates that the proposed inchworm sub-strategy is indeed superior 

to the method detailed in ref. [57], with a confidence level of at least 97%, Table II below. Both 

strategies traversed all desired trajectories with an average of 𝑛𝑎 = 5 anchors, illustrating that, 

through dynamic anchor selection, the proposed inchworm sub-strategy achieves superior trajectory 

following performance without suffering from reduced speed. 
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Table II. Comparative Analysis – Confidence Interval. 

Strategy Population-Mean, 𝜇, 97% Confidence Interval 

Ref. [57] [0.0564 - 0.0782] 

Our Method [0.0400 - 0.0564] 

8. Conclusions 

This paper presents an inchworm-inspired motion planning strategy developed for achieving accurate 

swarm trajectory following. The proposed strategy divides the swarm into two subgroups of anchor 

and mobile robots that take turns for incrementally moving towards their destination. Through inter-

robot sensing, the two subgroups cooperate and compensate for their motion uncertainty, thus, 

allowing the swarm to achieve enhanced localization and trajectory following performance. 

 The proposed inchworm strategy is novel as it dynamically selects the optimal number and choice 

of anchor robots as the swarm travels through a series of desired configurations. This flexibility 

feature is used to maximize the swarm’s overall motion performance, which consists of two 

competing objectives – swarm localization and speed. As a result, the proposed strategy achieves 

superior trajectory following performance, when compared to existing methods. Through dynamic 

anchor selection, the proposed strategy could also consider other run-time practical constraints, such 

as the finite sensing range between swarm robots. In doing so, the motion planning and localization 

problems at hand are decoupled. This allows the proposed inchworm motion strategy to work with 

any localization method considered. 

A complementary swarm localization method, which fuses inter-robot proximity 

measurements and robot motion commands is also presented. This method is novel as it does not 

require direct communication between anchor and mobile robots. The proposed localization 

method is also applicable to non-anchor based swarm motion strategies, as long as the swarm is 

equipped with the necessary sensing technology. 

The inchworm motion strategy was evaluated through a series of physical and simulated 

experiments. The physical experiments, conducted with a swarm of mROBerTO millirobots, 

illustrated the feasibility of the developed motion planning and localization strategies for real-

world applications, such as human swarm interactions. The performance of the developed 

inchworm strategy was also compared to competing methods through extensive trajectory 

following simulations. The results illustrate that the proposed strategy achieves significantly 

superior trajectory following performance, without suffering from reduced swarm speed.  
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Appendix A: Heuristic for optimal anchor selection 

An extensive series of simulations were conducted to evaluate the performance of the proposed 

heuristic for optimal anchor selection, detailed in Section 4.2.2. One may recall that the heuristic 

proposes to select anchor robots which maximize distribution and minimize separation for each step 

of the inchworm motion strategy. 

 In the simulations detailed below, a swarm of 𝑛 robots was instructed to move from one starting 

configuration to a random desired configuration, using the inchworm motion sub-strategy. In each 

incremental step, a fixed number of 𝑛𝑎 robots were designated as stationary anchors, while the 

remaining robots moved towards their destination. Furthermore, for each step, the anchor robots were 

selected using the proposed heuristic. Once the inchworm motion was completed, noisy inter-robot 

sensor measurements were simulated and used to estimate the swarm’s post motion configuration. 

The results of the simulated motion and subsequent estimations were evaluated terms of the 

localization error, 𝑒𝑙(𝑛𝑎, 𝑹𝑎), Eq. (8), and compared to the performance of a swarm where anchors 

were selected randomly. 

1,000 random experiments were simulated for a swarm size of 𝑛𝑟 = 10 robots, where 𝑛𝑎 = 5 

robots remain stationary at a time. All simulations were initialized with the same uncertain estimate 

of the swarm’s initial configuration, 𝐶𝑐. The simulations, however, were subjected to different levels 

of noise in their inter-robot sensing and motion command executions.  
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 Fig. A1(a)-(b) below shows the results obtained for (a) anchors found through the proposed 

heuristic, (b) randomly chosen anchors, respectively. The anchors determined through the proposed 

heuristic, Fig. A1(a), certainly outperform the random choice of anchors that can be used as initial 

guesses, Fig. A1(b). 

 
 

(a) (b) 

Fig. A1. Swarm localization errors for different combinations of anchors: (a) anchors found with proposed 

heuristic, (b) random anchors. 

Appendix B: Swarm topology estimation 

Herein, we consider an alternate formulation to the swarm-topology estimation problem, developed 

in response to the computational demands of our previous approach.38 

 Let us consider the inter-robot sensor measurements, 𝜌𝑖  and 𝜑𝑖 , detailed in Section 5, 

representing the relative position of Robot j with respect to Robot i, as observed from the reference 

frame of Robot i, in polar coordinates, Fig. B1 below.  

 

Fig. B1: Inter-robot sensor measurements, thick black lines represent robot orientations. 

 Such local inter-robot measurements can be transformed to Cartesian coordinates through a simple 

transformation: 

    
 

𝑖 = ( 𝑥 
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 ), respectively. 

 The estimate of the topology of the swarm (i.e., the position of all robots with respect to a local 

frame) can, then, be solved for via the following minimization formulation: 

{ 𝒙𝑖
  

 
𝐿

 
}
𝑖=1

𝑛𝑟
= arg min

{ 𝒙𝑖
 

 
𝐿

 
}
𝑖=1

𝑛𝑟
𝑄 (𝐵2)

 

where: 

  𝑄 = ∑ ∑
𝜆𝑖𝑗

 
| 𝒙𝑖 − 𝒙̅  

𝐿
 
𝐿 |

 

  
𝑛𝑟, ≠𝑖
 =1

𝑛𝑟
𝑖=1 , and (B3) 

  𝒙𝑖  
𝐿 = [

𝑥 
 

𝑖 cos( 𝜃𝑖 
𝐿 ) − 𝑦 

 
𝑖 sin( 𝜃𝑖 

𝐿 ) + 𝑥 
𝐿

𝑖

𝑥 
 

𝑖 sin( 𝜃𝑖 
𝐿 ) + 𝑦 

 
𝑖 cos( 𝜃𝑖 

𝐿 ) + 𝑦 
𝐿

𝑖

]. (B4) 



An inchworm-inspired motion strategy for robotic swarms 23 

 

Above, 𝒙̅  
𝐿  is the average position of Robot j and 𝜃𝑖 

𝐿  is the estimated orientation of Robot i, as 

observed from the swarm’s local reference frame.  𝜆𝑖  is the observance indicator of Robot j by Robot 

i:  

  𝜆𝑖 = {
1     if robot   is observed by  
0     otherwise                             

. (B5) 

 The solution to minimizing the proposed objective function is the estimated topology of the swarm 

and the orientation of all robots, with respect to the local frame. However, the inter-robot sensing data 

available from each robot also provides additional estimates of the positions of neighboring robots. 

This is illustrated in Fig. B2 below, where the estimated topology of the swarm, determined by solving 

Eq. (B2) is shown in gray, while the estimated robot positions based on inter-robot sensing 

measurements are shown in blue. Here, [i,j] represents the position of Robot j, as observed by Robot 

i (i.e.,  [1,2] is the position of Robot 2, as observed by Robot 1).  The estimated swarm topology, 

{ 𝒙̂ 
𝐿

𝑖}𝑖=1
𝑛𝑟 , shown in yellow, is, then, calculated as the centroid position of all available observations. 

Moreover, the uncertainty in the estimated position of each robot is calculated as the standard 

deviation in the cluster of points representing the position of each robot: 

  𝛿𝑝𝑖 = |𝜎𝑥𝑖
 + 𝜎𝑦𝑖

 |
 
, (B6) 

where 𝜎𝑥𝑖
  and 𝜎𝑦𝑖

  are the standard deviations of the cluster of points associated with Robot i. 

 

Fig. B2: Swarm-topology estimation. 
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